Math 261
Fall 2023
Lecture 6

Class QZ 4
Consider $f(x)=\frac{1}{x}$
Simplify the difference quotient, the evaluate for $h=0$. Box Your final Answer.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\frac{x-(x+h)}{h x(x+h)}=\frac{x-x-x-h}{h x(x+h)} \\
& =\frac{-k}{h x(x+h)}=\frac{-1}{x(x+h)} \text { for } h=0 \frac{-1}{x(x+0)}=\frac{-1}{x \cdot x}=\frac{-1}{x^{2}}
\end{aligned}
$$

Introduction to limits:
Given $f(x)$
as $x \rightarrow a^{+} \Rightarrow \lim _{x \rightarrow a^{+}} f(x)=L_{1}$
as $x \rightarrow a^{-} \Rightarrow \lim _{x \rightarrow a^{-}} f(x)=L_{2}$
If $L_{1}=L_{2} \Rightarrow \lim _{x \rightarrow a} f(x)=L$
Limit does not mean that $f(a)$ is defined.

$$
\begin{array}{ll}
\lim _{x \rightarrow-3^{-}} f(x)=0 & \text { So } \lim _{x \rightarrow 4} f(x)=3 \\
\lim _{x \rightarrow-3^{+}} f(x)=0
\end{array} \Rightarrow \lim _{x \rightarrow-3} f(x)=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=4 \quad \lim _{x \rightarrow 0^{-}} f(x)=4
$$

Consider the function below

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{+}} f(x)=0 & \lim _{x \rightarrow 0} f(x)=\text { D. N.E. } \quad f(-2)=5 \\
\lim _{x \rightarrow 0^{-}} f(x)=3 & f(0)=0
\end{array}
$$

How to evaluate the limit?
Always plug in the value, hope for the best.

$$
\begin{aligned}
& \lim _{x \rightarrow-5}\left(x^{2}-4 x\right)=(-5)^{2}-4(-5)=25+20=45 \\
& \lim _{x \rightarrow \sqrt{2}} \frac{2 x}{x^{2}-1}=\frac{2(\sqrt{2})}{(\sqrt{2})^{2}-1}=\frac{2 \sqrt{2}}{2-1}=\frac{2 \sqrt{2}}{1}=2 \sqrt{2} \\
& \lim _{x \rightarrow \frac{\pi}{4}}(\tan x+\cot x)=\tan \frac{\pi}{4}+\cot \frac{\pi}{4} \\
& =1+1=2
\end{aligned}
$$

what happens if we plug in the value but we have a situation?

$$
\lim _{x \rightarrow 1} \frac{2 x^{2}-2 x}{x-1}=\frac{2(1)^{2}-2(1)}{1-1}=\frac{2-2}{1-1}=\frac{0}{0}
$$

Indeterminate
We can try factoring to Simplify form

$$
\lim _{x \rightarrow 1} \frac{2 x^{2}-2 x}{x-1}=\lim _{x \rightarrow 1} \frac{2 x(x-1)}{x-1}=\lim _{x \rightarrow 1} 2 x=2(1)=2
$$

Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x^{2}-9}=\frac{3^{2}-5(3)+6}{3^{2}-9}$

$$
=\frac{9-15+6}{9-9}=\frac{0}{0} \text { I.F. }
$$

Try factoring

$$
\begin{array}{r}
\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{(x-2)(x-3)}{(x+3)(x-3)}=\lim _{x \rightarrow 3} \frac{x-2}{x+3}=\frac{3-2}{3+3} \\
=\frac{1}{6}
\end{array}
$$

Evaluate $\lim _{x \rightarrow 3} \frac{\frac{1}{x-2}-1}{x-3}=\frac{\frac{1}{3-2}-1}{3-3}=\frac{\frac{1}{1}-1}{3-3}$

$$
=\frac{1-1}{3-3}=\frac{0}{0} \text { IF. }
$$

Try using $L C D$ to clear/Simplify

$$
\begin{aligned}
& L C D=x-2 \\
& \lim _{x \rightarrow 3} \frac{\frac{1}{x-2}-1}{x-3}=\lim _{x \rightarrow 3} \frac{(x-2) \cdot \frac{1}{x-2}-(x-2) \cdot 1}{(x-2)(x-3)}=\lim _{x \rightarrow 3} \frac{1-(x-2)}{(x-2)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{1-x+2}{(x-2)(x-3)}=\lim _{x \rightarrow 3} \frac{-x+3}{(x-2)(x-3)}=\lim _{x \rightarrow 3} \frac{-(x-3)}{(x-2)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-1}{x-2}=\frac{-1}{3-2}=\frac{-1}{1}=-1
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{\sqrt{4}-2}{4-4}=\frac{2-2}{4-4}=\frac{0}{0}$ IVF.
one way to proceed is to rationalize the nom.

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}= & \lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
& =\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

Graph $f(x)=x^{2}-4$

Special factoring

$$
\begin{aligned}
& A^{2}-B^{2}=(A-B)(A+B) \\
& A^{2}+B^{2}=\text { Prime } \\
& A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right) \\
& A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
\end{aligned}
$$

Class QZ 5
Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=\frac{e^{3}-8}{2^{2}-4}=\frac{8-8}{4-4}=\frac{0}{0}$ IF.
Box Your final Ans.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2} \\
& =\frac{2^{2}+2(2)+4}{2+2}=\frac{4+4+4}{4}=\frac{12}{4}=3
\end{aligned}
$$

